2816. [2003:111] Proposed by Boris Harizanov, student, Stara Zagora, Bulgaria.

In acute-angled isosceles triangles $A_1B_1C_1$ (with $A_1C_1=B_1C_1$) and $A_2B_2C_2$ (with $A_2C_2=B_2C_2$), we have $A_1C_1=A_2C_2$. For k=1,2, we have a circle with centre I_k and radius r_k inscribed in $\triangle A_kB_kC_k$, and a circle with centre O_k and radius O_k circumscribed around O_k and O_k and radius O_k circumscribed around O_k and O_k are O_k and O_k and O_k and O_k are O_k are O_k and O_k are O_k and O_k are O_k are O_k and O_k and O_k are O_k are O_k and O_k are O_k are O_k and O_k are O_k are O_k are O_k and O_k are O_k and O_k are O_k and O_k are $O_$

If $I_1O_1=I_2O_2$, is it true that $\triangle A_1B_1C_1$ and $\triangle A_2B_2C_2$ must be congruent?

Solution by Christopher J. Bradley, Bristol, UK.

The answer is NO.

In a triangle with sides a, a and c, the <u>circumradius</u> R and the inradius

$$r$$
 are given by $R=rac{a^2}{\sqrt{4a^2-c^2}}$ and $r=rac{c}{2}\sqrt{rac{2a-c}{2a+c}}.$ Thus,

$$OI^2 = R^2 - 2Rr = \frac{a^2(a-c)^2}{4a^2-c^2}$$
.

If we have two triangles with sides a, a, c and a, a, d, then

$$O_1 I_1^2 = O_2 I_2^2 \implies \frac{(a-c)^2}{4a^2 - c^2} = \frac{(a-d)^2}{4a^2 - d^2}$$

 $\implies c = d \text{ or } (2c - 5a)(2d - 5a) = 9a^2.$

Thus, the triangles are not necessarily congruent.

Also solved by MICHEL BATAILLE, Rouen, France; CHIP CURTIS, Missouri Southern State College, Joplin, MO, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; D. KIPP JOHNSON, Beaverton, OR, USA; DAVID LOEFFLER, student, Trinity College, Cambridge, UK; D.J. SMEENK, Zaltbommel, the Netherlands: ECKARD SPECHT, Otto-von-Guericke University, Magdeburg, Germany; PETER Y. WOO, Biola University, La Mirada, CA, USA; LI ZHOU, Polk Community College, Winter Haven, FL, USA; TITU ZVONARU, Bucharest, Romania; and the proposer.

Some solvers did not mention the case OI = 0 (but this editor has been kind to them). Zhou commented that the answer is, in fact, "YES" if IO means the signed distance.

2817. [2003:112] Proposed by Vedula N. Murty, Dover, PA, USA.

Suppose that A, B, and C are the angles of $\triangle ABC$. Define

$$\begin{split} L &= 4\cos^2\left(\frac{A}{2}\right)\cos^2\left(\frac{B}{2}\right)\cos^2\left(\frac{C}{2}\right); \\ M &= \left(\cos\left(\frac{A}{2}\right) + \cos\left(\frac{B}{2}\right) + \cos\left(\frac{C}{2}\right)\right) \\ &\prod_{\text{cyclic}} \left(\cos\left(\frac{B}{2}\right) + \cos\left(\frac{C}{2}\right) - \cos\left(\frac{A}{2}\right)\right). \end{split}$$

Show that L = M.

 Solution by Li Zhou, Polk Community College, Winter Haven, FL, USA. Firstly,

$$M = \left(\cos^2\left(\frac{B}{2}\right) + \cos^2\left(\frac{C}{2}\right) + 2\cos\left(\frac{B}{2}\right)\cos\left(\frac{C}{2}\right) - \cos^2\left(\frac{A}{2}\right)\right) \cdot \left(\cos^2\left(\frac{A}{2}\right) - \cos^2\left(\frac{B}{2}\right) - \cos^2\left(\frac{C}{2}\right) + 2\cos\left(\frac{B}{2}\right)\cos\left(\frac{C}{2}\right)\right)$$
$$= 4\cos^2\left(\frac{B}{2}\right)\cos^2\left(\frac{C}{2}\right) - \left(\cos^2\left(\frac{B}{2}\right) + \cos^2\left(\frac{C}{2}\right) - \cos^2\left(\frac{A}{2}\right)\right)^2. \tag{1}$$

Since $\cos\left(\frac{B+C}{2}\right)=\sin\left(\frac{A}{2}\right)$, we have

$$\cos^{2}\left(\frac{B}{2}\right) + \cos^{2}\left(\frac{C}{2}\right) - \cos^{2}\left(\frac{A}{2}\right)$$

$$= \frac{1}{2}(\cos B + \cos C + 2) - \left(1 - \sin^{2}\left(\frac{A}{2}\right)\right)$$

$$= \cos\left(\frac{B+C}{2}\right)\cos\left(\frac{B-C}{2}\right) + \sin^{2}\left(\frac{A}{2}\right)$$

$$= \sin\left(\frac{A}{2}\right)\left(\cos\left(\frac{B-C}{2}\right) + \cos\left(\frac{B+C}{2}\right)\right)$$

$$= 2\sin\left(\frac{A}{2}\right)\cos\left(\frac{B}{2}\right)\cos\left(\frac{C}{2}\right). \tag{2}$$

Substituting (2) into (1), we then have

$$M \ = \ 4\cos^2\left(rac{B}{2}
ight)\cos^2\left(rac{C}{2}
ight)\left(1-\sin^2\left(rac{A}{2}
ight)
ight) \ = \ L$$
 .

II. Solution by Arkady Alt, San Jose, CA, USA.

Let $\alpha=\frac{\pi-A}{2}$, $\beta=\frac{\pi-B}{2}$, and $\gamma=\frac{\pi-C}{2}$. Then α , β , $\gamma>0$, and $\alpha+\beta+\gamma=\pi$. Thus, we can interpret α , β , γ as the angles of a triangle T. Without loss of generality, we may assume that T has circumradius R=1/2.

Let a, b, and c denote the sides of T. Then, by the Law of Sines, we have $a = \sin \alpha, b = \sin \beta$, and $c = \sin \gamma$. Note that

$$\cos\frac{A}{2} \; = \; \sin\left(\frac{\pi}{2} - \frac{A}{2}\right) \; = \; \sin\alpha \; = \; a \; .$$

Similarly, $\cos\left(\frac{B}{2}\right) = b$ and $\cos\left(\frac{C}{2}\right) = c$. Then, using the well-known

formula $R=rac{abc}{4K}$, where K denotes the area of T , we have

$$L = 4(abc)^2 = 64R^2K^2 = 16K^2$$
.

On the other hand, using Heron's Formula, we get

$$\begin{split} M &= (\sin\alpha + \sin\beta + \sin\gamma) \prod_{\text{cyclic}} (\sin\alpha + \sin\beta - \sin\gamma) \\ &= (a+b+c)(b+c-a)(c+a-b)(a+b-c) = 16K^2 \,. \end{split}$$

Also solved by MICHEL BATAILLE, Rouen, France; CHRISTOPHER J. BRADLEY, Bristol, UK; CHIP CURTIS, Missouri Southern State College, Joplin, MO, USA; CHARLES R. DIMINNIE, Angelo State University, San Angelo, TX, USA; OVIDIU FURDUI, student, Western Michigan University, Kalamazoo, MI, USA; RICHARD I. HESS, Rancho Palos Verdes, CA, USA; JOE HOWARD, Portales, NM, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; D. KIPP JOHNSON, Beaverton, OR, USA; KEE-WAI LAU, Hong Kong, China; JOSEPH LING, University of Calgary, Calgary, AB; DAVID LOEFFLER, Student, Trinity College, Cambridge, UK; D.J. SMEENK, Zaltbommel, the Netherlands; PANOS E. TSAOUSSOGLOU, Athens, Greece; PETER Y. WOO, Biola University, La Mirada, CA, USA; TITU ZVONARU, Bucharest, Romania; and the proposer.

2818. [2003:112] Proposed by Mihály Bencze, Brasov, Romania.

Suppose that $n, k \ge 2$ are integers such that $(n + k^n, k) = 1$.

Prove that at least one of $n + k^n$ and $n k^{(k^n - 1)} + 1$ is not prime.

Solution by Michel Bataille, Rouen, France.

Let $p=n+k^n$ and $q=nk^{(k^n-1)}+1$. If p is composite, then we are done. Suppose instead that p is a prime. We are given that (p,k)=1. By Fermat's Little Theorem, we have

$$q = (p-k^n)k^{p-n-1} + 1 \equiv -k^{p-1} + 1 \equiv 0 \pmod{p}$$
.

Furthermore,

$$egin{array}{lll} n\left(k^{(k^n-1)}-1
ight) &>& k^{(k^n-1)}-1 \ &\geq& (1+(k-1)ig)^{(k^n-1)}-1 \ &\geq& (k^n-1)(k-1) \ &\geq& k^n-1 \,, \end{array}$$

and hence, $q = nk^{(k^n-1)} + 1 > n + k^n = p$. It follows that q is composite.

Also solved by ŠEFKET ARSLANAGIĆ, University of Sarajevo, Sarajevo, Bosnia and Herzegovina; CHRISTOPHER BOWEN, Halandri, Greece; CHIP CURTIS, Missouri Southern State College, Joplin, MO, USA; NATALIO H. GUERSENZVAIG, Universidad CAECE, Buenos Aires, Argentina; RICHARD I. HESS, Rancho Palos Verdes, CA, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; KEE-WAI LAU, Hong Kong, China; DAVID LOEFFLER, student, Trinity College, Cambridge, UK; NORVALD MIDTTUN, Royal Norwegian Naval Academy, Bergen, Norway; MICHAEL PARMENTER, Memorial University of Newfoundland, St. John's, NL; SKIDMORE COLLEGE PROBLEM GROUP, Saratoga Springs, New York, USA; LI ZHOU, Polk Community College, Winter Haven, FL, USA; TITU ZVONARU, Bucharest, Romania; and the proposer.

Most of the solutions are the same as the one featured above, except for the demonstration of the fact that p < q, which almost all solvers either took for granted or simply stated as "evident" or "clear". From the proof given above, it is obvious that the assumption " $(n+k^n,k)=1$ " is really superfluous. However, Parmenter is the only solver who explicitly pointed this out.

2819. [2003:112] Proposed by Mihály Bencze, Brasov, Romania.

Let
$$f:\mathbb{R} o\mathbb{R}$$
 satisfy, for all real x and y , $f\left(rac{2x+y}{3}
ight)\geq f\left(\sqrt[3]{x^2y}
ight)$.

Prove that f is decreasing on $(-\infty, 0]$ and increasing on $[0, \infty)$.